this post was submitted on 19 Feb 2025
1313 points (99.8% liked)
Technology
63134 readers
4511 users here now
This is a most excellent place for technology news and articles.
Our Rules
- Follow the lemmy.world rules.
- Only tech related content.
- Be excellent to each other!
- Mod approved content bots can post up to 10 articles per day.
- Threads asking for personal tech support may be deleted.
- Politics threads may be removed.
- No memes allowed as posts, OK to post as comments.
- Only approved bots from the list below, to ask if your bot can be added please contact us.
- Check for duplicates before posting, duplicates may be removed
- Accounts 7 days and younger will have their posts automatically removed.
Approved Bots
founded 2 years ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
This is cool but also remember the practicalities of Fusion make it not much better than nuclear:
https://www.youtube.com/watch?v=ZHmHBMaS6Sw
Well nuclear is great, so even "not much better" would be great.
Yea one of the most interesting applications of fusion reactor research is the requirements in advancements for material science also benefits fission and even solar power generation, so the research bears fruit well and above the stated goals.
not to say its the greatest form of energy production ever, but, what are your gripes with nuclear these days anyway?
None! My comment may be misunderstood.
If you're of my generation you kind of grew up being told fusion energy was the holy grail of energy production as it's clean and doesn't produce a bunch of radioactive byproduct. (Stuff like SimCity etc. made fusion reactors seem like a miracle technology)
In reality fusion also produces a massive amount of radiation and radiative byproducts, so it's not the holy grail of energy that I think most people might assume it is.
Fusion and Fission are two sides of the same coin, so fusion experiments are important because they aid in making fission reactors safe as well!
I'm especially looking forward to seeing how material scientists attempt to solve the massive fast neutron radiation that fusion reactors produce, as Thorium reactors have the same issue.
Well, really it's the opposite, nuclear works already. So why not just build nuclear plants at 1/20 the cost? (and actually get some net positive energy)
Just saying...
this (specific project) isn't about harvesting energy..
I understand that, it can't be. Because fusion power generation hasn't all been worked out yet. Unlike fission. That's my point.
Also, once fusion does work, it will still be the most expensive way to generate energy man has ever devised, so there's that too.
The primary issue is that deuterium-deuterium reactions (the only practical fusion process that seems to work is deuterium-tritium and deuterium-helium, as you need insane temperatures for proton-boron, so in any realistic reactor deuterium will end up reacting with itself) produce 3 times the radiation of equivalent power output from fission reactions, so you need MASSIVE amounts of shielding for a reactor to run for an extended period of time.
This also highly irradiates the materials inside the reactors themselves, to a degree that maintenance requires built-in robots because the inside of the reactor is too radioactive for humans (this also eventually destroys the robots). The most optimistic estimates for how long a reactor could possibly last is 100 years. At that point the entire reactor would need to be torn down and buried because most of the components would be too radioactive to use anymore. At which point you have the exact same issue as radioactive waste storage, but no recycling process for something crazy like a radioactive isotope of silicon.
However! That's why these experiments are important! As every advancement they make towards making fusion safe, also makes fission safer, as they're two sides of the same coin.
no. that's thermodynamically impossible.
though it is true that fission and fusion are opposites, you cannot gain energy by fissing and fusing the same material. There's an inverted bell curve where medium sized elements are the lowest energy state. You can get energy by making atoms more medium, fusing the smallest atoms or fissing the biggest ones. Doing the opposite costs energy.