Given a general statement such as all ravens are black, a form of the same statement that refers to a specific observable instance of the general class would typically be considered to constitute evidence for that general statement. For example,
(3) My pet raven is black.
is evidence supporting the hypothesis that all ravens are black.
The paradox arises when this same process is applied to statement (2). On sighting a green apple, one can observe:
(4) This green apple is not black, and it is not a raven.
By the same reasoning, this statement is evidence that (2) if something is not black then it is not a raven. But since (as above) this statement is logically equivalent to (1) all ravens are black, it follows that the sight of a green apple is evidence supporting the notion that all ravens are black. This conclusion seems paradoxical because it implies that information has been gained about ravens by looking at an apple.
I'm probably misunderstanding, but this doesn't feel like a paradox to me. Logic that applies to a positive doesn't necessarily apply to an inverse statement. They are not stating the same thing.