nsa

joined 2 years ago
 

pl.aiwright is an AI-powered dialogue generation tool for interactive narrative games. This is a first step for an open research platform to explore AI-generated dialogue in games.

Notably, it's different from most other AI miiddleware like InWorld since it's open source.

[–] nsa@kbin.social 2 points 2 years ago

It seems like for creative text generation tasks, metrics have been shown to be deficient; this even holds for the new model-based metrics. That leaves human evaluation (both intrinsic and extrinsic) as the gold standard for those types of tasks. I wonder if the results from this paper (and other future papers that look automatic CV metrics) will lead reviewers to demand more human evaluation in CV tasks like they do for certain NLP tasks.

 

Abstract:

We systematically study a wide variety of image-based generative models spanning semantically-diverse datasets to understand and improve the feature extractors and metrics used to evaluate them. Using best practices in psychophysics, we measure human perception of image realism for generated samples by conducting the largest experiment evaluating generative models to date, and find that no existing metric strongly correlates with human evaluations. Comparing to 16 modern metrics for evaluating the overall performance, fidelity, diversity, and memorization of generative models, we find that the state-of-the-art perceptual realism of diffusion models as judged by humans is not reflected in commonly reported metrics such as FID. This discrepancy is not explained by diversity in generated samples, though one cause is over-reliance on Inception-V3. We address these flaws through a study of alternative self-supervised feature extractors, find that the semantic information encoded by individual networks strongly depends on their training procedure, and show that DINOv2-ViT-L/14 allows for much richer evaluation of generative models. Next, we investigate data memorization, and find that generative models do memorize training examples on simple, smaller datasets like CIFAR10, but not necessarily on more complex datasets like ImageNet. However, our experiments show that current metrics do not properly detect memorization; none in the literature is able to separate memorization from other phenomena such as underfitting or mode shrinkage. To facilitate further development of generative models and their evaluation we release all generated image datasets, human evaluation data, and a modular library to compute 16 common metrics for 8 different encoders at https://github.com/layer6ai-labs/dgm-eval.

[–] nsa@kbin.social 1 points 2 years ago

hmmm... not sure which model you're referring to. do you have a paper link?

[–] nsa@kbin.social 1 points 2 years ago

do you have a link?

[–] nsa@kbin.social 1 points 2 years ago
 

Interesting technique to increase the context window of language models by finetuning on a small number of samples after pretraining.

(I did a double-take after seeing the heading on the first page of the pdf, but it's not actually an old paper.)

We present Position Interpolation (PI) that extends the context window sizes of RoPE-based pretrained LLMs such as LLaMA models to up to 32768 with minimal fine-tuning (within 1000 steps), while demonstrating strong empirical results on various tasks that require long context, including passkey retrieval, language modeling, and long document summarization from LLaMA 7B to 65B. Meanwhile, the extended model by Position Interpolation preserve quality relatively well on tasks within its original context window. To achieve this goal, Position Interpolation linearly down-scales the input position indices to match the original context window size, rather than extrapolating beyond the trained context length which may lead to catastrophically high attention scores that completely ruin the self-attention mechanism. Our theoretical study shows that the upper bound of interpolation is at least $\sim 600 \times$ smaller than that of extrapolation, further demonstrating its stability. Models extended via Position Interpolation retain its original architecture and can reuse most pre-existing optimization and infrastructure.

 

Abstract:

Work on scaling laws has found that large language models (LMs) show predictable improvements to overall loss with increased scale (model size, training data, and compute). Here, we present evidence for the claim that LMs may show inverse scaling, or worse task performance with increased scale, e.g., due to flaws in the training objective and data. We present empirical evidence of inverse scaling on 11 datasets collected by running a public contest, the Inverse Scaling Prize, with a substantial prize pool. Through analysis of the datasets, along with other examples found in the literature, we identify four potential causes of inverse scaling: (i) preference to repeat memorized sequences over following in-context instructions, (ii) imitation of undesirable patterns in the training data, (iii) tasks containing an easy distractor task which LMs could focus on, rather than the harder real task, and (iv) correct but misleading few-shot demonstrations of the task. We release the winning datasets at https://inversescaling.com/data to allow for further investigation of inverse scaling. Our tasks have helped drive the discovery of U-shaped and inverted-U scaling trends, where an initial trend reverses, suggesting that scaling trends are less reliable at predicting the behavior of larger-scale models than previously understood. Overall, our results suggest that there are tasks for which increased model scale alone may not lead to progress, and that more careful thought needs to go into the data and objectives for training language models.

 

Here's some preliminary work from Microsoft from 2022 that incorporates OpenAI's Codex model to make NPCs that can interact with the player using natural language instructions. It works by defining an API of functions the bot can use, then having Codex generate function calls in response to the player's instructions.

Paper: https://aclanthology.org/2022.wordplay-1.3/
Repo: https://github.com/microsoft/interactive-minecraft-npcs
Videos: Introductory Demo, Escape Room Demo

 
[–] nsa@kbin.social 0 points 2 years ago (1 children)

If the effect is strong enough, then it could have a very negative effect on LLM training in the near future, considering more and more of the internet contains ChatGPT & GPT-4 content in it and automatic detectors are currently quite poor.