The thing is that it's legit a fraction and d/dx actually explains what's going on under the hood. People interact with it as an operator because it's mostly looking up common derivatives and using the properties.
Take for example ∫f(x) dx
to mean "the sum (∫) of supersmall sections of x (dx) multiplied by the value of x at that point ( f(x) ). This is why there's dx at the end of all integrals.
The same way you can say that the slope at x is tiny f(x) divided by tiny x or d*f(x) / dx
or more traditionally (d/dx) * f(x)
.